Bidirectional Long Short-Term Memory with Gated Relevance Network for Paraphrase Identification
نویسندگان
چکیده
Semantic interaction between text segments, which has been proven to be very useful for detecting the paraphrase relations, is often ignored in the study of paraphrase identification. In this paper, we adopt a neural network model for paraphrase identification, called as bidirectional Long Short-Term Memory-Gated Relevance Network (BiLSTM+GRN). According to this model, a gated relevance network is used to capture the semantic interaction between text segments, and then aggregated using a pooling layer to select the most informative interactions. Experiments on the Microsoft Research Paraphrase Corpus (MSRP) benchmark dataset show that this model achieves better performances than hand-crafted feature based approaches as well as previous neural network models.
منابع مشابه
Acoustic Modeling Using Bidirectional Gated Recurrent Convolutional Units
Convolutional and bidirectional recurrent neural networks have achieved considerable performance gains as acoustic models in automatic speech recognition in recent years. Latest architectures unify long short-term memory, gated recurrent unit and convolutional neural networks by stacking these different neural network types on each other, and providing short and long-term features to different ...
متن کاملA Step Beyond Local Observations with a Dialog Aware Bidirectional GRU Network for Spoken Language Understanding
Architectures of Recurrent Neural Networks (RNN) recently become a very popular choice for Spoken Language Understanding (SLU) problems; however, they represent a big family of different architectures that can furthermore be combined to form more complex neural networks. In this work, we compare different recurrent networks, such as simple Recurrent Neural Networks (RNN), Long Short-Term Memory...
متن کاملOn Extended Long Short-term Memory and Dependent Bidirectional Recurrent Neural Network
In this work, we investigate the memory capability of recurrent neural networks (RNNs), where this capability is defined as a function that maps an element in a sequence to the current output. We first analyze the system function of a recurrent neural network (RNN) cell, and provide analytical results for three RNNs. They are the simple recurrent neural network (SRN), the long short-term memory...
متن کاملPrediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کاملIntegration of remote sensing and meteorological data to predict flooding time using deep learning algorithm
Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...
متن کامل